Rheology:

 Rheology: Describes the flow of liquids and the deformation of solids.

ال rheologyهو علم بدرس ال flow of liquidالي هو تدفق السوائل. وكيف تتحرك السؤال وكمان بدرس ال deformation of solid بس mainly عم نحكى عن ال liquid

• **Viscosity**: Resistance of a fluid to flow; the higher the viscosity, the greater the resistance.

اهم عامل الي باثر على تدفق السوائل الي هو اللزوجه وهو اهم عامل لازم ندرسو، اللزوجه عباره عن مقاومه السائل للتدفق يعني هو عكس ال flow كان السائل لزج رح يكون اكتر مقاومه بالتالي ال التدفق قليل رح يكون

So increase viscosity, increase resistance, decrease flow of liquids.

The importance of rheology in pharmacy:

 It is applied in the formulation and analysis of emulsions, pastes, suppositories, and tablet coatings. Manufactures of medicinal and cosmetic creams, pastes and lotions must be capable of producing products with acceptable consistency and smoothness and reproducing these qualities.

هون بحكيلنا ليه مهم ندرس ال rheology لانها مهمه في تحضير ال emulsions وبرضو كمان مهمه متلا يوم احضر الدواء على شكل معجون او كريم او لوشن لانو بالنهايه بدي هاي ال product يكون الها لزوجه مقبوله لابدي اياه كتير لزج ولا كتير سائل بدي اياه معتدل

• It is involved in the mixing and flow of materials, their packaging into containers, and their removal prior to use.

كمان ال rheologyمهم يوم متلا اخلط مادتين سوا او كيف احط الدوا بالعليه تبعتو

 The rheology of a particular product can affect its patient acceptability, physical stability and even biologic availability (viscosity affects absorption rates from GIT).

كمان الزوجه رح تأثر على تقبل المريض للدوا نفسو يعني لو كان الدوا كتير كتير لزج او حتى لو كان كتير سائل ممكن المريض متلا ما يقبلو وغير هيك ممكن تأثر علي ال bioavailability الدوا كتير ممكن يعمل مشاكل وما يذوب بالعصاره الموجود بالمعده بالتالي رح ياثر على امتصاصو من المعده بالتالي رح تتاثر الكميه الي رح توصل للدم والى هي بعبر عنها بالل bioavailability

 Rheologic properties of a pharmaceutical system can affect the selection of processing equipment used in its manufacture.

كمان مهمه كتير عشان نعرف نختار شو الجهاز الي رح اصنع فيه في بعض المواد ممكن وانا اطبق عليها قوه لاحركها تزيد اللزوجه تبعتها ففمكن تصير صلبه كتير وتخرب الجهاز وتعملو damage

- Materials are classified depending on whether or not their flow properties are in accord with Newton's law of flow into
 - Newtonian
 - Non-Newtonian systems.

هلا حسب اذا تدفق المادة بتبع قانون نيوتن رح تتصنف المواد الي نوعين:

- Newtonian وهي عباره عن مواد تتبع قانون نيوتن
- Non-Newtonian هي عباره عن المواد التي لا تتبع قانون نيوتن
- Newtonian system:
- Newton's Law of Flow

Consider a "block" of liquid consisting of parallel molecules. If the bottom layer is fixed in place and the top plane of liquid is moved at a constant velocity, each lower layer will move with a velocity directly proportional to its distance from the stationary bottom layer.

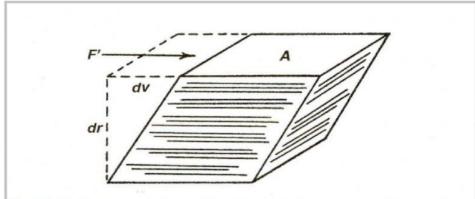
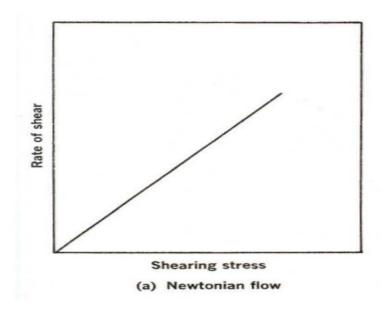


Fig. 20–1. Representation of the shearing force required to produce a definite velocity gradient between the parallel planes of a block of material.

- قانون نيوتن بحكي انو لو بدي اخد جزء من السائل رح يتكون من طبقات من الماده بشكل متوازي (متل ورق الشده نتخيلها) هلا لو بدي اعتبر انو الطبقه الي تحت الي هي ال bottom layer ثابته وال top layerهي الي رح تتحرك، لو طبقت قوه معينه على ال system الي رح يصير انو الطبقات رح تبلش تتحرك بسرعه معينه ورح تتحرك مسافه معينه حسب بعدها عن ال bottom layer الطبقه الاقرب للقوه رح تتحرك مسافه اكتر
 - The difference in velocity, dv, between two planes of liquid separated by an infinitesimal distance dr is the velocity gradient or the rate of shear, dv/dr
 - هلا الفرق بالسرعه dv بين طبقتين من السائل بتفصل بينهم مسافة drهاد بسميه rate of shear وبرمز ال G
 - The force per unit area, F'/A, required to bring about flow is called the shearing stress (F).
 - القوه الي بدي اطبقها على مساحة سطح معينه من السائل لحتى يبلش يتحرك بسميها ال shearing stressبرمزلها ب
 - Newton recognized that the higher the viscosity of a liquid, the greater is the force per unit area (shearing stress) required to produce a certain rate of shear
 - نيوتن بحكيلنا انو كل ما كانت اللزوجه عاليه لازم اطبق عليها قوه اكتر لحتى تتحرك ب Rate of shearمعين


(more viscous liquid, need more force per unit area(shearing stress), to produce certain rate of shear)

 Rate of shear (G) should be directly proportional to shearing stress (F), or

$$\frac{F'}{A} = \eta \frac{dv}{dr}$$

هاد رح یکون قانون نیوتن F'/Aهي ال shearing stressالقوه الي رح اطبقها على مساحة سطح معینه، Dv/Drهي عباره عن ال rate of shear وربطهم اللزوجه ك ثابت.

- Rheogram: Flow curve obtained by plotting F versus G for a given system.
- هو عباره عن منحى برسمو بين F وحسب الماده وشو نوعها رح يكون منحى معين لقدام رح نحكي عنهم بالتفصل لكل نوع من المواد.
 - For Newtonian liquid a straight line passing through the origin is obtained. Viscosity is constant for Newtonian regardless shearing stress.

- هلا اذا كانت الماده تتبع قانون نيوتن بالتالي رح يكون منحنى عباره عن خط مستقيم رح يبلش من نقطة الصفر ال originحسب ما نشوف بالرسمه الي فوق. هون بهمني اعرف كمان انو ال Fluidityوالي هي معكوس ال viscosity, وكمان نقطه مهم نعرفنا ال اللزوجه لهاي المواد ثابته بغض النظر عن القوه الي بطبقها يعني لو ناخد مثال الماء شو ما طبقت عليه قوه او حركتو اللزوجه تبعتها رح تضلها ثابته.
 - The unit of viscosity is the poise: The shearing force required to produce a velocity of 1 cm/sec between two parallel plates of liquid each 1 cm2 in area and separated by a distance of 1 cm.

هون بحكي عن مفهوم اللزوجة حسب القانون هي عباره عن F/G وبالتالي رح تكون هي عباره عن القوه الي انا بدي اطبقها لحتى ينتج سرعه 1cm/secبين طبقتين من السائل علي مساحة سطح 1cm2 والطبقتين هدول بفصل بينهم مسافة 1cm

The cgs units for poise are dyne sec cm-2 or g cm-1 sec-1. Centipoise (cp) = 0.01 poise.

مهم نعرف شو ال unitللزوجة وحسب ال cgsشو، فهدول حفظ السيوله معكوس اللزوجه. Fluidity, φ: reciprocal of viscosity.

$$\phi = \frac{1}{\eta}$$

Kinematic viscosity: The absolute viscosity divided by the density of A liquid at a specific temperature.

هي عباره عن ال absolute viscosityوالي بجيبها من قانون نيوتن. وبقسمها على كثافة السائل على درجه حراره معينه لازم نثبت الحراره طبعا لانو الحراره ممكن تاثر على لزوجة السائل فلازم اخدها بعين الاعتبار.

- The unit of kinematic viscosity are th stoke (s) or Centistoke.(cs)
- ننتبه هون كمان ال unitتبعتها بتختلف عن ال absoluteورح تكون هون stokeاو ممكن .Centistoke
 - Cs=0.01stoke
 - Viscosity increasing agents are described in U.
 S. Pharmacopeia.

TABLE 20–1 ABSOLUTE VISCOSITY OF SOME NEWTONIAN LIQUIDS AT 20°C	
Liquid	Viscosity (cp)
Castor oil	1000
Chloroform	0.563
Ethyl alcohol	1.19
Glycerin, 93%	400
Olive oil	100
Water	1.0019

• هدول امثله على مواد Newtonian، هون ممكن يجيب سؤال عليهم فلازم نعرف انو ال viscosity الهم ثابته لا بتزيد ولا بتقل مع ال

Example 20-1: An Ostwald viscometer was used to measure acetone, which was found to have a viscosity of 0.313 cp at 25°C. Its density at 25°C is 0.788 g/cm³. What is the kinematic viscosity of acetone at 25 °C? Water is used ordinarily as a standard for viscosity of liquids. Its viscosity at 25°C is 0.8904 cp. What is the viscosity of acetone relative to that of water at 25°C?

- Kinematic viscosity = 0.313 cp/0.788 g/cm3=0.397 poise/(g/cm).
- Relative viscosity= 0.313 cp/0.8904 cp= 0.352 (dimensionless).
- هون اذا طلب relative viscosityرح يكون اقسم اللزوجه للماده الاولى على الزوجه للماده التانيه.
- اذا طلب viscosity relative متلا لل viscosity relative لل Relative على لزوجة الماء بينما لو طلب Relative viscosity للماء رخ اعكسها رح اقسم لزوجة الماء للزوجة الاسيتون
 - No unit for relative viscosity •

Temperature Dependence and the Theory of Viscosity

 Viscosity of a gas increases with temperature whereas the viscosity of a liquid decreases as the temperature is raised, and the fluidity of the liquid increases.

$$\eta = Ae^{E_v/RT}$$
$$\ln \eta = \ln A + \frac{E_v}{RT}$$

Where A is a constant depending on the molecular weight and the molar volume of a liquid. E_{ν} is an activation energy required to initiate flow between molecules.

12

- اول عامل رح ياثر على اللزوجه وهو الحراره تاثيرها بعتمد هل الماده gas or liquid
- لو كانت gasرح تزيد اللزوجه مع الحراره والسبب انو الجزئيات يوم تكون بحلة الغاز رح تكون بعيده عن بعضها فيوم ارفع درجة الحراره رح تقرب من بعضها اكتر فلو اخدت ا مل منو رح اشوف انو عدد الجزيئات الى فيه زادت ف زادت اللزوجه
- بينما لو كانت الماده عباره عن liquid رح تقل اللزوجه مع الحراره متلا لو كان عنا قطر (سكر ومي) ورحت حطيتو على الغاز الي رح يصير انو اللزوجه تبعتو رح تقل. والسبب هون عكس الغاز اصلا هون الجزيئات بتكون قريبه من بعضها فيوم ارفع درجه الحراره رح تمتلك طاقه وتصير تبعد عن بعضها فرح تقل اللزوجه

$$\eta = Ae^{E_v/RT}$$
$$\ln \eta = \ln A + \frac{E_v}{RT}$$

• هاد القانون كتير مهم هو بحكي عن تاثير. ال temperature على viscosity ال

•

Ev :activation energy (energy required to initiate flow between molecules.

A: constant

R: gas constant = 1.987**cal**·K⁻¹·mol⁻¹.

مهم نعرف هون انو هاي المعادله معادلة خط مستقيم فبدخل علي الاله الحاسبه ال المعادله معادلة خط مستقيم فبدخل علي الاله الحاسبه ال المعادله معادلة خط مستقيم فبدخل علي الاله الحاسبه ال المعادله معادلة خط مستقيم فبدخل علي الاله الحاسبه المعادلة معادلة خط مستقيم فبدخل علي الاله الحاسبه المعادلة معادلة خط مستقيم فبدخل علي الاله الحاسبة المعادلة معادلة خط مستقيم فبدخل علي المعادلة خط مستقيم فبدخل علي الاله الحاسبة المعادلة المعادلة معادلة خط مستقيم فبدخل علي الاله الحاسبة المعادلة المعا

بعد هیك منطلع ال slopeویساوي ال Ev/Rوال Intercept ویساوي

- The activation energy for flow has been found to be one third that of the energy of vaporization.
 - طاقة التنشيط بتساوي ثلث طاقة السائل للتبخر.
- The energy of vaporization of a liquid is the energy required to remove a molecule from the liquid, leaving a "hole" behind equal in size to that of the molecule that has been departed. A hole must also be available in a liquid if one molecule wants to flow past another.
- طاقة التبخير للسائل: هي الطاقة المطلوبة لازالة جزيء من السائل" تارك وراه فراغ مساوي لحجم الجزيء اللي غادر", لازم توافر فراغ بين جزيئات السائل في حال في جزيء بده يتدفق" انه يلاقي مكان اله"

•

• It can be concluded that the free space needed for flow is about one-third the volume of a molecule. This presumably because a molecule in flow can back, turn, and maneuver in a space smaller than its actual size

- نستنتج انه المساحة الناتجة من مغادرة جزيء) المساحة الحرة (الازمه لحدوث تدفق بتكون حوالي ثلث حجم الجزيء , وهذا االشي ممكن انه يعود للجزيء نفسه اللي رح يتدفق لهالمكان انه يدور وينتقل بحيث انه يقدر ينقل نفسه ويدخل بمكان أصغر من حجمه الفعلي
- More energy is required to break bonds and permit flow in liquids composed of molecules that are associated through hydrogen bonds. These bonds are broken at higher temperatures by thermal movement
- هلا كل ما كانت الرابطه بين الجزيئات قويه لحتى يصيرلها تدفق بدي طابه اكتر عشان هيك ال hydrogen bondsبدها طاقه اكتر وتحتاج درجة حراره اكتر.

Example 20-2: Use the viscosity versus temperature data for glycerin (Table 20-2) to obtain the constant A and E_{ν} . What is the value of r^2 , the square of the correlation coefficient?

Ln η = -23.4706 +9012 (1/T)

Slope = $9012=E_V/R$

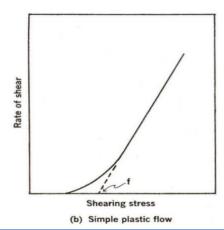
 $E_v = 9012 \times 1.987 = 17,909 \text{ cal/mole.}$

Intercept = -23.4706= In A

 $A = 6.40985 \times 10^{-11}, R^2 = 0.997.$

GLYCERIN AT SEVERAL TEMPERATURES* 20 30 -42-200 6 15 25 279 303 231 273 288 293 298 253 0.00432 0.00395 0.00366 0.00358 0.00347 0.00341 0.00336 0.00330 1.34×10^{5} 6.71×10^6 12110 6260 2330 1490 954 629 15.719 11.806 9.402 8.742 7.754 7.307 6.861 6.444

• على الأله الحاسبه بعط axis تقيم 1/ Tو لازم تكون كيلفين و Yaxis ln على الأله الحاسبه بعط slope وال viscosity


Non-Newtonian Systems

- Non-Newtonian: The majority of fluid pharmaceutical products are not simple liquids and do not follow Newton's law.
 - اغلب محاليل الادويه هي عباره عن Non-Newtonian ما رح تكون محلول بسيط وهاي المحاليل لا تتبع قانون نيوتن
- This behavior is exhibited by liquid and solid heterogeneous dispersions such as colloidal solutions, emulsions, liquid suspensions, an ointments.
 - غالبا هاي المواد بتكون غير متجانسه متل ال معلقات ومرهم وغيرو
 - . طبعا همه ۳ انواع:
- Three classes of flow are recognized:
 - 。 Plastic
 - Pseudoplastic

。 Dilatant.

Plastic Flow

- Materials that exhibit plastic flow are known as Bingham bodies.
- Plastic flow curves do not pass through the origin, but rather intersect the shearing stress axis (or will if the straight part of the curve is extrapolated to the axis) at a particular point referred to as the yield value
- و نبلش باول نوع و هو عباره عن ال plastic المواد لو نيجي نرسم ال .rheogram تبعهم رح نشوف انو المنحى ما رح يبلش من الصفر ال originبينما عم يتقاطع مع محور السينات و هاي نقطة التقاطع هي عباره عن yield value المواد لو يعباره عن القوم الازمه لحتى تبلش الماده تتدفق ممكن تكون ال yeild value نقطه التقاطع اذا كان بدايه المنحى غير خطي رح تكون عباره هون عن امتداد الخط المستقيم مثل الصوره للي تحت

- A Bingham body does not begin to flow until a shearing stress corresponding to the yield value is exceeded. At stresses below the yield value, the substance acts as an elastic material.
- The rheologist classifies Bingham bodies, that is, those substances that exhibit a yield value as solids, whereas substances that begin to flow at the smallest shearing stress and show no yield value are defined as liquids.
 - The slope of the rheogram is termed the mobility and its reciprocal is known as the plastic viscosity.

$$U = \frac{F - f}{G}$$

 f is the yield value, or intercept, on the shear stress axis in dynes/cm², and F and G are previously defined.

- لازم نعرف انو السوائل او الماده الي بكون ال yeild value الها كتير كتير قليله وقريبه على الصفر هدول لا يعتبرو solid فممكن نحكي انو ال plastic همكن نحكي انو ال
 - بعد ال yield value(f)رح يكون عنا خط مستقيم الميل تبعور ح يساوي mobility U

U=F-f/G

 Plastic flow is associated with the presence of flocculated particles in concentrated suspensions. As a result, a continuous structure is set up throughout the system.

• مثال على ال plastic يرم يكون عنا معلقات واترسبت على شكل plastic .

- A yield value exists because of contacts between adjacent particles (brought about by van der Waals forces), which must be broken down before flow can occur.
 - يوم تترسب المواد رح تكون contactمع بعضها وتكون عامله روابط van dar waalsفلازم اكسر هاي الرابطه لحتى الماده تبلش تتدفق.
- A yield value is an indication of the force of flocculation: The more flocculated the suspension, the higher will be the yield value.
 - كل ما كانت الجزيئات more flocculatedيعني رح تكون ال vieldيعني رح تكون ال value
- Frictional forces between moving particles can also contribute to the yield value.

• احتكاك الي بصير بين الجزيذات يوم تتحرك برضو الو دور لانو رح يعيق التدفق فهاد رح يزيد من ال yield value

- Once, the yield value has been exceeded, any further increase in shearing stress brings about a directly proportional increase in G, rate of shear. In effect, a plastic system resembles a Newtonian system at shear stresses above the yield value
 - مجرد ما اتجاوزت ال yeild value اي زياده بال قوه ال shearing مجرد ما اتجاوزت ال stress المجدد من التجاوزت ال stress المجدد المجدد متلو متل. Newtonian system
- Example 20-3: A plastic material was found To have a yield value of 5200 dynes/cm2. A Shearing stress above the yield value, F was Found to increase linearly with G. If the rate Of shear was 150 sec-1 when F was 8000 Dynes/cm2, calculate U, the plastic viscosity Of the sample.

U = (8000-5200)/150=18.67 poise تطبيق مباشر على القانون