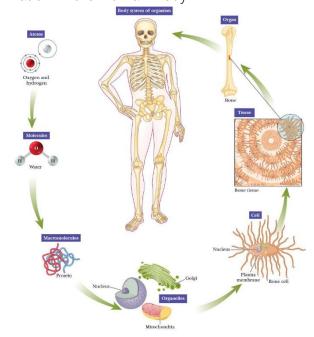

Biochemistry

Done By:
Mohammad Alomari

Water: The Solvent for Biochemical Reactions

Introduction:


- **Biology**: Natural science is concerned with the study of life and living organisms, including their structure, function, growth, evolution, distribution, identification and taxonomy.
- **Chemistry**: Natural science that studies non-living systems, including their:
 - The composition, structure, properties and change of matter.
 - Properties of individual <u>atoms</u>.
 - How atoms form chemical <u>bonds</u> to create chemical compounds.
 - The interactions of substances through <u>intermolecular forces</u> that give matter its general properties.
 - The interactions between substances through <u>chemical reactions to form different</u> substances.

Biochemistry/Biological chemistry

- Combines biology and chemistry
- Chemistry of life
 - → It is the scientific discipline that seeks to explain life at the molecular level.
- It uses the tools and terminology of chemistry to describe the various attributes of living organisms.

Biochemistry and Life

- Organism can be studied using the methods of chemistry and physics as all living things (from simplest bacterium to the human being.
- Biochemistry Multidisciplinary in nature
 - Biology and chemistry
 - Uses results from many sciences to answer questions about the molecular nature of life processes
- Levels of Structural Organization in the Human Body

Elements Found in Biological Systems

- Biological molecules are mainly composed of H, C, N, and O.
- Other elements are also necessary for life.

1 H																	
		Abundant Abundant Trace											6 C	7 N	8	9 F	
11 Na	12 Mg												14 Si	15 P	16 S	17 Cl	
19 K	20 Ca			23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn			33 As	34 Se	35 Br	
					42 Mo						48 Cd					53 I	
					74 W												

- Most of the essential elements in biological systems are nonmetals.
- General properties of nonmetals
 - H, O, N, F, Cl are gases in the elemental state.
 - All nonmetallic elements are poor conductors of heat and electricity, i.e., exhibit both positive and negative oxidation numbers.
 - More electronegative than metals
 - Concentrated in the upper right-hand corner of the periodic table (except for H).
 - Compounds formed by the combination of metals and nonmetals tend to be ionic, having a metallic cation and a nonmetallic anion.

- Abundance of Important Elements

- Oxygen is the most abundant element by mass in biological systems, making up about 65% of the human body \rightarrow followed by carbon (18.5%), \rightarrow hydrogen (9.5%), \rightarrow and nitrogen (3.2%).
- Together, these four elements constitute over 95% of the mass in living organisms.

Oxygen:

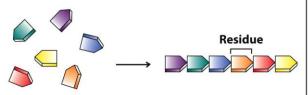
- 80: [He] 2s² 2p⁴
- Diatomic molecules O2
- By mass, oxygen is the third-most abundant element in the universe, after hydrogen and helium.
- Only 21% of the air we breathe is oxygen, nitrogen and other gasses make up the majority.
- Highly reactive nonmetal, and a strong oxidizing agent that readily forms oxides with most elements as well as with metabolic breakdown of food molecules
- Oxygen is normally found in an oxidation state of -2.
- Without oxygen a human being cannot survive for more than a few minutes.

Carbon

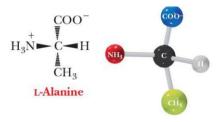
- $-6C: 1s^2 2s^2 2p^2$
- Is the fourth most abundant element in the universe by mass after hydrogen, helium, and oxygen.
- Has the unique ability to form long chains (consisting of more than 50 C atoms) and stable rings with five or six members.
- Forms unusually strong C-C single bonds, C=C double bonds, and carbon-carbon triple bonds.
- The electronegativity of carbon is too small to allow carbon to form C⁴⁻ ions with most metals and too large for carbon to form C⁴⁺ ions when it reacts with nonmetals.
 - → Carbon therefore forms covalent bonds with many other elements.
- Forms strong double and triple bonds with several other nonmetals, including N, O, P, and S.
 - This versatility (ability to form many bonds)
 - → Enables carbon to form the many different shapes adopted by the complex organic compounds that make up the bodies of animals and plants.
 - → Some of the carbon chains needed for life are millions of atoms long.
 - ⇒ such as the glucose ring (along with a single oxygen molecule),
 - ⇒ the backbone of the polypeptide chains that form the different proteins in the bodies of living things
- Carbon's versatility is the basis of many of the complex organic compounds vital to life.

Hydrogen

- ₁H: 1s¹.
- It contains only one proton and one electron.
- Elemental hydrogen is diatomic molecule (H2)
- Is a colorless, odorless, and nonpoisonous gas
- It is the most abundant element in the universe
- It is an important constituent of water, proteins, carbohydrates, fats etc.
- At 1 atm, liquid hydrogen gas has a boiling point of -252.9 °C
- Have three oxidation states:
 - H+ ion, oxidized by losing electrons.
 - Neutral H: found in elemental hydrogen (H₂ gas).
 - H- (hydride ion): reduced by gaining an extra electron.
- Is found in many covalent compounds: CH₄ (methane), H₂O (water), NH₃ (ammonia), HCl.
- It has a unique capacity for hydrogen-bond formation.


Nitrogen

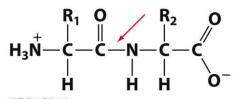
- 7N: 1s² 2s² 2p³
- About 78% of air by volume is nitrogen
- It is a component of proteins and nucleic acids
- N₂ molecule contains triple bond and very stable with respect to dissociation into atomic species.
- Nitrogen forms many compounds with hydrogen and oxygen in which the oxidation number varies from -3 to +5.
- Elemental nitrogen in the atmosphere cannot be used directly by either plants or animals and must be converted into a reduced (or 'fixed') state to be useful for higher plants and animals (Nitrogen Fixation).


Major Groups of Biochemicals

- Living cells include large molecules, such as proteins, nucleic acids, polysaccharides, and lipids.
- Polymers: Poly = many, meros = parts.
 - Macromolecules formed by the bonding of smaller units
- Monomers: Mono + meros, single + part
 - Small molecules that may bond to many others to form a polymer
 - → Amino acids → Proteins
 - → Nucleotides → Nucleic acids
 - → Monosaccharides → Polysaccharides
 - → Glycerol and 3 fatty acids → Lipids

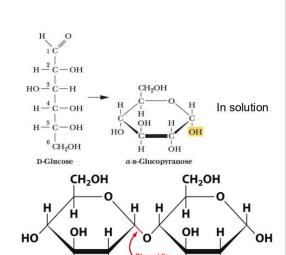
- Biochemistry involves the study of 4 types of molecules.

- Proteins.
- Nucleic Acids
- Carbohydrates
- Lipids


Polymer

Protein

- Amino acid:
 - Structure:
 - → Central carbon atom is bonded to a carboxyl group, an amino group, a hydrogen, and the R group (variable group).

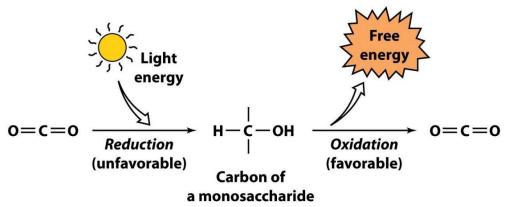

Monomers

- They get their name from the fact that they all contain an amino group and carboxyl group.
- It is the differences between the R groups that make each amino acid unique.
- Amino acids link to form polypeptides and proteins
- Amino acid residues are connected via peptide bonds.
- Polypeptide sequences are always read from the N terminus to the C terminus

Carbohydrates

- Compounds made up of carbon, hydrogen, and oxygen
- General formula of (CH2O)n, where n is at least 3
- Simple form are called monosaccharides, or sugars
- Glucose is the most common monosaccharide
- Simple sugars make up larger polymers (energy storage and structural components).

Nucleotides


- Basic unit of the hereditary materials DNA and RNA
- Form the molecular currency of the cell, adenosine triphosphate (ATP)
- Composed of a five-carbon sugar, a nitrogen-containing ring, and one or more phosphate groups
- Nucleotide residues link via phosphodiester bonds.
- Polymers of nucleotides yield nucleic acids.

Lipids

- Lipids (fats) have a variety of structures.
- Poorly soluble in water because they are composed of long chains of hydrocarbons
- Example of a simple lipid Palmitic acid, which has 16C

Source of Energy in Life Processes

- All cells require energy to function
- Sun Ultimate source of energy for all life on Earth
- Photosynthetic organisms use light energy to drive the energy-requiring synthesis of carbohydrates from carbon dioxide and water (reduction)
- Nonphotosynthetic organisms consume carbohydrates and use them as energy sources (oxidation)
- Hydrolysis of ATP is a part of many biochemical processes

© John Wiley & Sons, Inc. All rights reserved.

Reduction = gain of electrons

Oxidation = loss of electrons

Basics of Thermodynamics:

- The energy relevant to biochemical systems is called the Gibbs free energy (G) is determined by its enthalpy and entropy.

• 1. Enthalpy (H)

- التعريف: كمية الحرارة أو المحتوى الحراري للنظام. (total heat content)
- المعنى: تقيس الطاقة الحرارية الكامنة في الروابط الكيميائية والحرارة الممتصة أو المنبعثة أثناء التفاعل.
 - الوحدة¹⁻J·mol :

• 2. Entropy (S)

- التعريف: مقياس لدرجة العشوائية أو الاضطراب (disorder) في النظام.
 - المعنى: كلما زادت العشوائية زادت قيمة الإنتروبيا. (S)
 - الوحدة 1-J·K⁻¹·mol

3. Gibbs Free Energy (G)

- التعريف: مقياس للطاقة الحرة التي يمكن للنظام استخدامها لإجراء عمل. (work)
 - العلاقة: تعتمد على كل من Hو كمن خلال المعادلة:

$$\Delta G = \Delta H - T \Delta S$$

- الوحدة¹-J·mol:
 - المعنى:
- (spontaneous). إذا $\mathbf{G} < \mathbf{0} \rightarrow \mathbf{0}$ التفاعل تلقائي
 - $_{\circ}$ إذا \leftarrow **0** < **ك**غير تلقائي.
 - و إذا $\mathbf{G} = \mathbf{0}$ إذا $\mathbf{G} = \mathbf{0}$ إذا ر