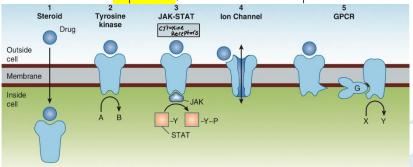
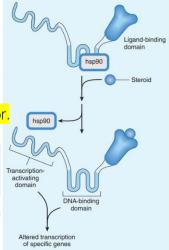
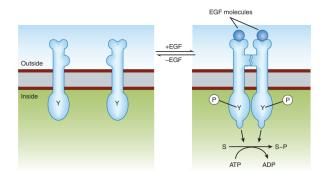

Pharmacology



Done By: Mohammad Alomari


Signaling Mechanisms and Drug Action

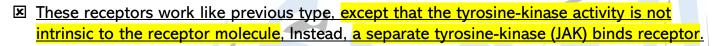
- Main categories of receptors:
 - Intracellular receptor:
 - → Lipid-soluble ligand: Steroids & L-Dopa & Vit-D.
 - Extracellular receptor:
 - → Regulated allosterically by binding of ligand on the extracellular domain.
 - → Ligand binds & stimulates an intracellular protein tyrosine kinase.
 - → Ligand gated ion channel that can be induced to open or close by the binding of a ligand.
 - → The receptor stimulates a G protein, which modulates production of second messengers.


1) Receptors for Lipid-Soluble Agents "gene-active" receptors

- Steroids: corticosteroids, mineralocorticoids, sex steroids, vitamin D & Thyroid Hormone
 - Those Receptors Stimulate genes transcription by binding to DNA response elements near the gene that its expression is regulated.
- Mechanism of Glucocorticoid action:
 - In the absence of hormone, the receptor is bound to hsp90,
 - → hps90: prevent normal folding of several structural domains of receptor.
 - Glucocorticoid (GC) diffuses into the cell membrane.
 - GC binds to an intracellular receptor and <u>hsp90 protein dissociates</u>.
 - DNA-binding and transcription-activating domains of the receptor.
 - → Fold into their functionally active conformations.
 - Alterations in target genes transcription.
- Important Therapeutic Consequences:
 - Their effect produced after <u>a lag period</u> of 30m-hour.
 - → Due to the time needed to produce proteins.
 - → We don't expect to alter pathology (symptoms of bronchial asthma) within minutes.
 - Their effect can persist for hours or days after agonist concentration reaches zero; due to <u>slow</u>
 <u>turnover</u> (long-half-life of proteins).
 - → Most enzymes and proteins remain active in cells for hours or days after synthesis.
 - → Their effects decrease slowly when administration stopped.

2) Tyrosine kinase Receptors.

- Mediates the actions of:
 - Insulin, Epidermal growth factor (EGF), Platelet-derived growth factor (PDGF), Atrial natriuretic peptide (ANP), Transforming growth factor- β (TGF β) & Other trophic hormones.
- Have 3 domains:
 - Extracellular hormone binding domain.
 - Connected by a hydrophobic segment.
 - Cytoplasmic enzyme domain: initiate the response (intrinsic part of receptor).
 - → Tyrosine kinase protein
 - → Serine kinase, or a guanylyl cyclase

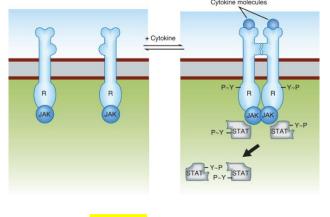

- Binding of the ligand will stimulate conformational change, of the receptor to change from monomeric to dimeric form.
- This dimerization will stimulate intracellular cascade of events, including:
 - Activation of Tyrosine kinase protein.
 - → Phosphorylation of the dimeric form (at tyrosine) & the downstream signaling proteins.
 - Then, activate a cascade of events in the cell.
- Duration of action:
 - The effect is limited by down-regulation.
 - \rightarrow Binding of ligand enhances endocytosis & degradation of the ligand & its receptor.
 - → If occurred at high rate than de novo synthesis of receptors this will leads to:
 - o Reduce the number of receptors & cell responsiveness.
 - o Example:
 - ⇒ EGF receptor tyrosine kinase, which undergoes rapid endocytosis followed by proteolysis in lysosomes after EGF binding.
 - Senetic mutations that interfere with this process cause excessive growth factor-induced cell proliferation and are associated with cancer.

- Tyrosine kinase protein inhibitors:

- Used in neoplastic disorders.
- Binds to the extracellular domain:
 - → Interfere with binding of growth factor.
 - → Monoclonal antibodies (eg, trastuzumab, cetuximab).
- Inhibit the receptor's kinase activity in the cytoplasm:
 - → Membrane-permeant molecules (eg, gefitinib, erlotinib).

3) Cytokine Receptors

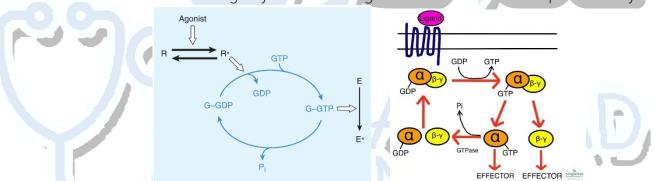
- Endogenous Ligands:
 - Regulators of growth & differentiation.
 - Growth hormone
 - Erythropoietin
 - Interferon
- Have 3 domains:
 - Extracellular hormone binding domain.
 - Connected by a hydrophobic segment.
 - Cytoplasmic enzyme domain: bounded to JAKs.
- Cytokine Kinase Signaling
 - Ligand binds to a receptor and causes two receptor molecules to dimerize.
 - Activation of JAKs protein & Phosphorylation of tyrosine residues on the receptor.
 - Phosphorylation of STAT molecules by JAKs.
 - STAT dimerization then travels to the nucleus, where they regulate gene transcription.




4) Ion Channels

- Regulate influx or efflux of ions, thus altering the electrical potential.
- Transmits its signal across the membrane by altering the electrical potential across the membrane.
- Ligand-Gated Ion Channels:
 - Those ligands: Acetylcholine, Serotonin, GABA & Glutamate.
- Voltage-Gated Ion Channels: controlled by membrane potential.
- Cholinergic receptors:
 - Muscarinic receptors.
 - Nicotinic receptors.
 - → Found in the ganglion & muscles & CNS.
 - \rightarrow Composed of five subunits $(2\alpha, 1\beta, 1\gamma, 1\delta)$.
 - ightharpoonup When ACh binds to sites on the extracellular domain of its α subunits, the receptor opens allowing Na+ ions to go inside the cell.

5) G-Protein Coupled Receptors – GPCR


- Receptors for: Monoamines, serotonin, Ach, peptide hormones, odorants, visual.
- Most common & most important receptors in the body.
- 7 Transmembrane domain Receptor (serpentine receptors).
- Its components:
 - 1. The Extracellular Ligand and Receptor.
 - → 7 Transmembrane domains:
 - o Loops numbered (I-VII).
 - ❖ Agonist will bind between I & III.
 - ❖ G-Protein binds to V & VI.
 - o C-terminus: Contains serine & threonine residues whose (-OH) can be phosphorylated.
 - o N-terminus binds to ligand.

- 2. GTP-binding protein (G Protein)
 - → Separate part of the receptor.
 - → Consists of:
 - αβγ complex.
 - o When it is inactive: It binds to GDP.
 - o When it is active: It binds to GTP.
 - \diamond The αβγ complex will dissociate \rightarrow βγ will stay stationary.
 - * α will activate or inhabit Effectors to produce Second Messengers.
 - → G proteins activate their downstream effectors when bound by GTP and also have the ability to hydrolyze GTP (يعني بحفزوا حالهم لحالهم وبثبطوا حالهم لحالهم).
 - o This hydrolysis reaction inactivates the G protein.
 - But can occur at a relatively slow rate.
 - ⇒ Amplifying the transduced signal.
 - By allowing the activated G protein to have a longer lifetime in the cell than the activated receptor itself.
 - ⇒ Active G-protein may remain active for seconds, enormously amplifying the signal.
 - This mechanism also helps explain how signaling by G proteins produces the phenomenon of spare receptors.
 - STP-bound Gs molecule, however, the duration of effector activation depends on the longevity of GTP binding to Gs rather than on receptor's affinity to NTs.

- → The endogenous ligands bind and stimulate receptors that couple to different G proteins.
 - The apparent promiscuity of such a ligand allows it to elicit different G protein-dependent responses in different cells.
 - o Example: NE stimulates (Gq-coupled α receptors) in cutaneous blood vessels, & stimulates (Gs-coupled β receptors) in the heart.

G-protein Signaling

- 1) Signaling Molecule binds to the Receptor & stabilizes its conformational state.
- 2) Opening a cavity in the receptor's cytoplasmic surface that binds the G protein.
- 3) Reduces nucleotide affinity for the G protein, allowing GDP to dissociate and GTP to replace it.
- 4) Active form of G protein dissociates from the receptor and can engage downstream mediators.
 - Activate or inhabit Effectors to produce Second Messengers
- 5) Signal is terminated by hydrolysis of GTP, returning the system to the basal unstimulated state.
- Summary:
 - GPCR-G protein coupling involves conformational change in both proteins,
 - Allowing agonist binding to the receptor to effectively "drive" a <u>nucleotide exchange reaction</u> that "switches" the G protein from its inactive (GDP-bound) to active (GTP-bound) form.

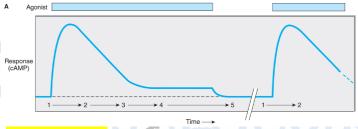
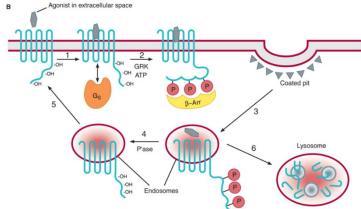


TABLE 2-1 G proteins and their receptors and effectors.


G Protein	Receptors for	Effector/Signaling Pathway
G _s	$\beta\textsc{-}\textsc{Adrenergic}$ amines, histamine, serotonin, glucagon, and many other hormones	↑ Adenylyl cyclase →↑ cAMP Stimulation
G _{i1} , G _{i2} , G _{i3}	$\alpha_{\text{2}}\text{-}\text{Adrenergic}$ amines, acetylcholine (muscarinic), opioids, serotonin, and many others	Several, including: ↓ Adenylyl cyclase →↓ cAMP Open cardiac K ⁺ channels →↓ heart rate
G_{olf}	Odorants (olfactory epithelium)	\uparrow Adenylyl cyclase $\rightarrow \uparrow$ cAMP \bigoplus Stimulation
G _o	Neurotransmitters in brain (not yet specifically identified)	Not yet clear
G_q	Acetylcholine (muscarinic), bombesin, serotonin (5-HT ₂), and many others	\uparrow Phospholipase C $\rightarrow \uparrow$ IP ₃ , diacylglycerol, cytoplasmic Ca ²⁺ \bigoplus Stimulation
Gt1, Gt2 Retina (Exe)	Photons (rhodopsin and color opsins in retinal rod and cone cells)	\uparrow cGMP phosphodiesterase $\rightarrow \downarrow$ cGMP (phototransduction) \bigcirc Stimulation

Receptor Regulation and Desensitization:

- Many GPCRs are regulated by phosphorylation.
 - Done By Kinases (esp. GRK) and reversed by phosphatases.
- **Desensitization:** G protein-mediated responses attenuate with time after reaching a high level, the response diminishes over seconds or minutes, even in the continued presence of the agonist.
 - It is often reversible.
 - 2nd exposure, after first exposure termination, leads to similar response (Resensitization).

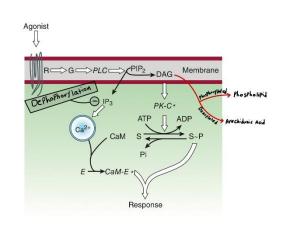
- GPCRs regulation (Resensitization):
 - 1) Agonist binding to receptors initiates signaling by G proteins (Gs) located in cytoplasm
 - 2) GRK will phosphorylate the receptor at C-terminal serine residues:
 - $\ ^{\blacksquare}$ Increases the receptor's affinity to $\beta\mbox{-arrestin}$ to binding to the receptor.
 - → ↓ Receptor's ability to interact with Gs, (reducing the agonist response).
 - \rightarrow β -arrestin binding also accelerates endocytosis of receptors.

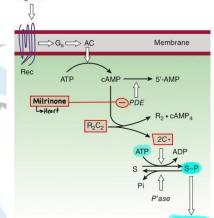
- 3) The receptor-arrestin complex binds to coated pits, promoting receptor internalization.
- Endocytosis of receptors promotes their <u>dephosphorylation</u> by phosphatases.
- Dissociation of agonists from internalized receptors; thus $\downarrow \beta$ -Arrestin binding affinity.
- 4) Return of receptors to the plasma membrane.

☑ Internalized receptors may go to lysosomes & Promoting receptor down-regulation.

- Alterations in Number or Function of Receptors
 - The agonist itself induces a:
 - → Decrease in the number (eg, down-regulation) of its receptors.
 - → Decrease in the coupling efficiency (eg, desensitization) of its receptors.
 - An antagonist may increase the number of receptors.
 - → By <u>preventing down-regulation</u> this may lead to <u>up-regulation</u>.
 - → When the antagonist is withdrawn, the elevated number of receptors can produce an exaggerated response to physiologic concentrations of agonist.
- Types of desensitization:
 - Homologous: related to occupation of receptor by agonist & occupied receptor only is altered.

Heterologous: related to excess production of cAMP & other adenylate cyclase-coupled receptors are altered.

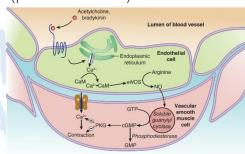

Second Messengers


Cyclic Adenosine Monophosphate (cAMP)

- Mediates many hormonal responses:
 - → PTH, ADH, HR, heart contractility, insulin, steroids.
- cAMP exerts most of its effects by stimulating cAMP-dependent protein kinases, that composed of:
 - → cAMP-binding regulatory (R) dimer & two catalytic (C) chains.
 - → When cAMP binds to R dimer, active C chains are released.
 - → C chains diffuse through the cytoplasm and nucleus,
 - o Transfer (Pi) from ATP to appropriate substrate proteins, often enzymes.
 - Depending on the organ & the action.
- When the hormonal stimulus stops, the intracellular actions of cAMP are terminated by:
 - → cAMP degradation into 5'-AMP by cyclic nucleotide phosphodiesterases (PDEs).
 - o Milrinone:
 - Selective inhibitor of type 3 phosphodiesterases
 - Used as an adjunctive agent in treating acute heart failure.
 - o Caffeine, theophylline, and methylxanthines:
 - Competitive inhibition of cAMP degradation.

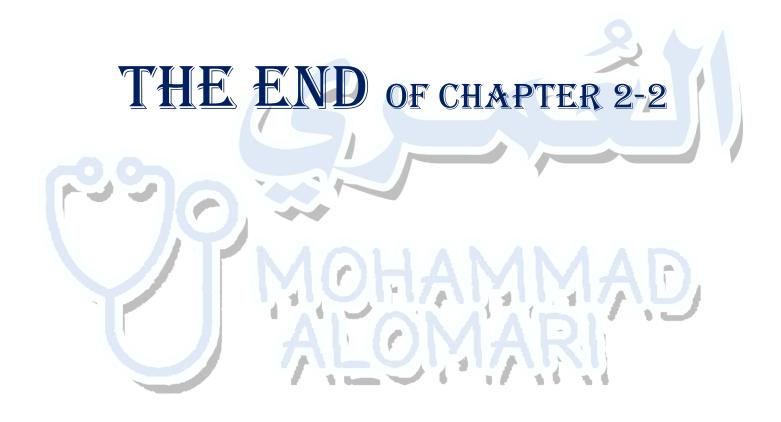
Phosphoinositides and Calcium

- Mediates many other hormonal responses.
- The crucial step is stimulation of phospholipase C (PLC)
 - → Which splits (PIP2), into two second messengers:
 - o Diacylglycerol (DAG):
 - o Inositol-1,4,5-trisphosphate (IP3).



- Diacylglycerol (DAG):
 - → Activates a phospholipid & calcium sensitive protein kinase (protein kinase C).
- Inositol-1,4,5-trisphosphate (IP3).
 - → Trigger release of Ca2+ from storage vesicles → Elevated cytoplasmic Ca²⁺.
 - o Promotes the binding of Ca²⁺ to calmodulin, which regulates activities of other enzymes, including calcium-dependent protein kinases.
- Mechanisms to damp or terminate signaling:
 - → IP3 is inactivated by <u>dephosphorylation</u>.
 - → DAG is either:
 - o **Phosphorylated** to yield phosphatidic acid, which is then converted into phospholipids,
 - o Deacylated to yield arachidonic acid;
 - → Ca2+ is actively removed from the cytoplasm by Ca2+ pumps.

Cyclic Guanosine Monophosphate (cGMP)


- Has established signaling roles in only a few cell types (Unlike cAMP).
 - → In intestinal mucosa and vascular smooth muscle.
 - → Atrial natriuretic peptide (ANP).
- cGMP-based signal transduction mechanism closely parallels the cAMP signaling mechanism.
- Ligands detected by receptors stimulate guanylyl cyclase to produce cGMP,
 - → cGMP acts by stimulating a cGMP-dependent protein kinase (protein kinase G).
 - → Increased cGMP concentration
 - o Caused by:
 - Activating the guanylyl cyclase activity that resides in the receptor's intracellular domain (TKR).
 - Mediates responses to nitric oxide that activates guanylyl cyclase activity
 - o Causes:
 - * Relaxation of vascular smooth muscle.
 - Dephosphorylation of myosin light chains
- Mechanisms to damp or terminate signaling:
 - → Enzymatic degradation of the cyclic nucleotide
 - → Dephosphorylation of kinase substrates

⊠ Name	☑ Produced by	☑ Downstream proteins
▼ cAMP	🗷 Adenylyl cyclase	■ Protein kinase A
Phosphoino-sitides (IP3)	Phospholipase C (PLC)	Endoplasmic reticulum receptors
☑ Diacylglycerol (DAG)		☑ Protein kinase C
▼ Calcium (Ca ²⁺)	Its release is stimulated by IP3	X
☑ cGMP	■ Guanylyl cyclase	■ Protein kinase G

- Effector: Adenylate cyclase & Second Messenger: cAMP.
 - Gs \rightarrow Adenylate cyclase \rightarrow (ATP \rightarrow cAMP)
 - **cAMP** will stimulate Protein Kinase A.
 - → 2catalytic subunits, normally inhibited by regulatory ones.
 - → 2regulatory subunits, will dissociate from catalytic subunits by binding of 4cAMP.
 - → This will increase the PKA activity (not levels).
 - o Increase the phosphorylation to do the response.

